Induced Bactericidal Response in a Sipunculid Worm

There is increasing evidence that indole immunity may be demonstrated in several intervertebrate species using appropriate methods. The bactericidal system seems to occupy an important position in the phylogenetic emergence of indole immunity. Such responses and others have been reviewed recently. 1

Bang 2 has reported on indole lysis in the ascocidian fluid of a sipunculid worm. This substance caused lysis of a parasitic marine ciliate and could be induced by the injection of foreign substances, including crab blood or without the ciliate, and by injecting large numbers of bacteria.

The preliminary experiments described here demonstrate an indole bactericidal system in another sipunculid species, *Dendrocoelum zosteroides* Chamberlin, a worm used for other experiments in comparative immuno

tology. 3

Animals were collected, maintained and bled as previously described. 4 The bacterium used for immunization and assay was strain EMH-1, a Gram-negative bacillus isolated from the normal gut flora of a spiny lobster. 5 Antigen preparation and bactericidal assay procedures were identical to those used for lobsters. 6 Animals received a primary intraperitoneal injection of 2 x 10^9 colony-forming units (cfu) of bacteria (64 μl). Sixty days later, the survivors received a secondary injection of 4 x 10^9 bacteria.

As Table 1 shows, ascocidian fluids from four immunized worms had no bactericidal activity. After a primary injection of antigen, most animals were negative from days 1 to 7 although slight responses were observed in two cases. By the sixteenth day, three of the five animals had developed significant titers without further immunization. On days 52 and 67, after an additional booster with antigen on day 60, bactericidal activity was considerably enhanced. Another group of five non-immunized worms bled at this time were negative. This verified that the increase in ascocidin fluid bactericidal was not a consequence of non-specific, seasonal variation.

It is interesting that there was no significant response during the first week after primary immunization; thus the ascocidin seems to differ from other invertebrate systems which attain or increase their activity significantly during the first or two after immunization. The ascocidin secondary response of this ascocidin is somewhat reminiscent of the antibody response in mammals. Obviously, studies of specificity will be required to assess the significance of this bactericidal system of the evolution of immunity. Such studies are in progress and will be reported elsewhere.

We thank Miss Susie Sawyer and Mrs. Sheehagh Frazee for technical assistance. This work was supported in part by grants from the US Public Health Service and by a contract from the US Office of Naval Research, Biological Branch.

E. Edward Evans
Peter F. Weinheimer
Ronald F. Anton

Department of Microbiology,
University of Alabama Medical Center,
Birmingham, Alabama.

John E. Cushing

Department of Biological Sciences,
University of California at Santa Barbara.

Received February 27; revised March 25, 1960.

Discrimination of Auditory Sequences by Monkeys

We have been successful in an attempt to train rhesus monkeys to discriminate among the four permutations of a two-element auditory sequence in which each of the elements can be either a burst of tone or a burst of noise. This is an unusually complex task and as such should prove sensitive to manipulations of the central nervous system. Indeed, in experiments now under way, severe deficits have been found in the discrimination performance of monkeys following unilateral ablation of the cortex of the superior temporal gyrus (auditory "association" cortex).

Table 1. BACTERIOTIC TITRES OF CENTRALIS-CONTAINING FLUID

<table>
<thead>
<tr>
<th>No. of antigen injections</th>
<th>No. of antibacterial activity</th>
<th>Individual titers</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>One</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Two</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Three</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Four</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Five</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

* Pool of ascocidin fluids from live worms.
Training the monkeys to make auditory discriminations is straightforward. From their 22×22×22 inch cage they can easily reach, through the bars, a 21×21 inch testing display (Fig. 1). Mounted behind this display is a loudspeaker through which the auditory stimuli are delivered. On the monkeys' side of the display, centred directly in front of the cone of the loudspeaker, is a 2×2 inch 'Perspex' panel which, if pressed at the appropriate time, causes the delivery of an auditory stimulus. Thus to get an auditory discriminative stimulus, the monkey must first give an "observing response". Lower on the display, placed symmetrically at each side of the food-well, are two circular 'Perspex' response panels which, if pressed at the appropriate time, cause a burst of tone (left panel) or a burst of noise (right panel) to be delivered through the loudspeaker. In the initial stages of training, the animal is taught to press the left panel after a tone stimulus (1,000 Hz for 0.5 s) and the right panel after a noise stimulus (20,000 Hz low-pass "white" noise for 0.5 s). A trial begins therefore when the monkey presses the observing panel: either a tone or a noise is delivered (at equal probability for each) on a random schedule. Immediately afterwards, the monkey must indicate the nature of the stimulus by pressing either the left or the right circular panel. A correct choice results not only in a tone or noise (appropriate for the panel pressed) but also in food reward (GABA 190 mg banana-flavoured pellet). An incorrect choice results in a tone or noise (appropriate for the panel pressed) and in a 3 s blackout during which a press on any panel is ineffective. After the blackout (or after the delivery of a food pellet when the choice is correct) a new trial may be initiated. Each of the three panels is illuminated from behind, so that at the beginning of a trial only the observing response panel is lit; when the stimulus has terminated, only the left and right panel are lit.

When this task has been learned (90 per cent correct responses in three consecutive daily 100-trial sessions), the monkey is further trained to discriminate between the stimuli when their durations range between 0.1 and 1.6 s.

Then training on sequence discrimination begins. Instead of a single tone or noise burst, a two-element sequence (with a silent interval between the two elements) is delivered to the monkey when he presses the observing response panel. All four patterns of this two-element sequence occur randomly, each at 0.25 probability of occurrence over a block of 100 trials. Two consecutive presses in the appropriate sequence on the circular panels are required before the next trial can be undertaken.

Five monkeys have so far learned this problem to the 90 per cent correct response criterion. This performance was achieved after 17, 28, 45, 80 and 125 daily sessions for the five animals. The average number of trials per session was 190, 300, 300, 180 and 186, so that the total number of trials to criterion for each of the monkeys was, respectively, 3,230, 7,800, 13,500, 16,420 and 23,025.

It is essential to point out that these figures are only for sessions during which no shaping of the animals' behaviour was undertaken; they therefore do not represent the total effort expended by either experimenters or monkeys but, rather, about what the animal had to do.

We next investigated the effects of discrimination performance and the ability to function within the spatial characteristics of duration on the observer's performance. This was done using a fatting method, labelled "stimulus" or "up-and-down" in which the changes in the level of difficulty of discrimination are made within the session in the light of the immediately preceding performance by the subject. This method allows the experimenter to force performance to a predetermined level for a wide range of stimulus conditions. It is also important that, through the process of negative feedback, discrimination performance about the predetermined level of difficulty becomes progressively more stable.

This phase of the experiments required at least fifty daily sessions of 100–150 trials. At each session the duration of one portion of the sequence (either the elements or the silent interval between the elements) was manipulated according to a protocol drawn up before the first session, while the other portion was held constant. These were three basic types of sequences in which the duration of elements was increased, in which the interval between them was increased and in which the duration of elements was decreased. Increases and decreases were made from the point of origin of 0.5 s: the duration at which all monkeys were originally trained and for which their performance was best. Durations were from 0.05 s to 10.0 s, divided into fifteen steps of 0.5 s. The durations of constant elements included 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 s. During the course of a session, the duration of the critical portion of the sequence was changed one step in the direction of greater difficulty of discrimination after three correct responses in a row and one step in the direction of greater ease of discrimination after an incorrect response. Either an increase or decrease of element length of 0.5 s caused the animal's performance to deteriorate progressively from the stable 90 per cent level, as does an increase of the duration of the silent interval. (Decreasing the interval from 0.5 s to zero does not, in these experiments, adversely affect the monkeys' performance.) Throughout these determina-
tions (at the end of every day’s testing session) each monkey has been shown to be discriminating at the 90-1 percent correct response level whenever elements and intervals were set equal at 0.5 s. The first monkey of the present group of three has now been performing at a stable 10 percent level above the above minimum.

We have chosen to plot the data as response areas, within which the monkey can discriminate at the 79 percent level or better, and outside which his performance falls below 79 percent correct. This percentage level is a consequence of the testing rules, that is, requiring three successive correct responses before increasing the difficulty of the discrimination forces the animal to “chute in” on the 79 percent level. Fig. 2 shows response areas for three monkeys.

A prime ingredient of auditory sequence discrimination which can be assessed from the data of Fig. 2 is short-term or recent memory. The testing paradigm, however, resembles a technique developed by Komsyki to study recent memory, and it is important to indicate the differences between the methods and explain why Komsyki’s technique is unsuitable for sequence discrimination problems. Komsyki trained dogs to respond to or withhold response (“go–no go”) according to whether two or three presented auditory stimuli were the same or different. This problem has also been studied (though with considerable difficulty) by monkeys who learned to respond to two or three acoustic clicks presented at the same or a different rate. Clearly, an animal need not discriminate between trials where A is followed by B and where B is followed by A; both require the same response. Similarly, trials where A follows A and where B follows B are also equivalent in terms of response requirement. In our experiments, however, A and B are different patterns of response, and only by remembering the sequence of presentation can the animal perform correctly. Steppan and Cadeau indicated that requiring monkeys to withhold response as one of the two response alternatives was perhaps detrimental to memory of the problem. Instead, they felt that a “go–left–right” paradigm, using two manipulanda, might prove more successful (Covey* gave a detailed discussion). We have adopted this suggestion.

The fact that our animals must remember the order in which particular stimuli are heard has important implications. By introducing a delay between the end of the two-element sequence and the time when the animal can begin his responses, or by increasing the number of elements in the sequence, for example, to four–tone–tone–tone, it should be possible to study short-term memory and its decay or interference. It then becomes feasible to perform with monkeys the type of digit–span experiment that has proved so profitable in the study of short-term memory in man.

The ability to deal with auditory sequences is vital to verbal behaviour. It is well known that, in man, severe defects in verbal behaviour often follow damage to the dominant cerebral hemisphere. Cerebral dominance has been demonstrated for many other human species. We feel that such a phenomenon might be uncovered by study of the effects of unilateral cortical lesions on the discrimination of auditory sequences by monkeys.

This research was supported by a career development grant from the National Institute of Mental Health, US Public Health Service, and by an MRC grant. We thank Professor J. Weiskrantz for encouragement and criticism.

JAMES H. DAWSON, III
ALAN COVEY
Institute of Experimental Psychology,
University of Oxford.
Received January 20, 1960.

GENERAL

Centroid Method of Integration

This method, for numerical integration in p dimensions, of the following “centroid method” seems to have been generally underestimated. The method is a generalization of the mid-point method for one dimension. The first approximation to the integral is \(I(x) \) multiplied by the “volume” of the region of integration, where \(\overline{x} \) is the centroid of the region. This first approximation is itself divided by 10 to provide a more accurate estimate of the “true” value.

\[
\int \cdots \int (x_1 - \overline{x}_1)^2 \cdots (x_p - \overline{x}_p)^2 \, dx
\]

Because any non-pathological domain can be “triangulated” into simplices, it is convenient to have a formula for the generalized moments of inertia of a simplex whose vertices are \(x_k = (x_{k,1}, \ldots, x_{k,d}) \), \(k = 0, 1, \ldots, p \). It can be shown that \(m(v) \) is equal to the coefficient of \(t_1 t_2 \cdots t_{p+1} \) in

\[
\frac{1}{(p-1)!} \left(\sum_{k=0}^{p} \frac{1}{k!} (x_k - \overline{x}_k) t_k \right)^p
\]

where 0 is the “volume” of the simplex, given by a familiar determinant, and where

\[
W_v = \sum_{k=0}^{p} \frac{1}{k!} \left(x_k - \overline{x}_k \right) t_k
\]

If 1 \(\leq n \leq 3 \) (but not if n = 4), it can be readily deduced that

\[
m(v) = \int (1 - n - 1) \sum_{k=0}^{p} (x_k - \overline{x}_k) t_k \cdots (x_k - \overline{x}_k) t_k
\]

and if \(n = 2 \) and 1 \(\leq n \leq 5 \) (but not if n = 6),

\[
m(v) = \frac{1}{2} \sum_{k=0}^{p} \sum_{r=1}^{p} (x_k - \overline{x}_k) t_k \cdots (x_k - \overline{x}_k) t_k
\]

where \(c_1 = 1/2, c_2 = 1/3, c_3 = 2/105 \). An example of a fourth moment for arbitrary p is

\[
m = (4, 0, 0, \ldots, 0)
\]

As an example we take \(f(x) = \exp \left(x_1 \cdots c_1 \right) \) and for the region of integration the simplex whose vertices