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ABSTRACT

A theoretical analysis of the effects of amygdalectomy is presented within a general
scheme for organismic motivation. By an engineering simulation, a solution for n-
person nonzero sum games is outlined; by an automata theory anaiysis, the effects of
amygdalectomy are specifically defined with respect to higher-order learning and the
organismic equivalent of “‘real time” in Turing machines is detailed.

l. A PROPOSED SOLUTION FOR NONZERO-SUM AND /N-PERSON GAMES

Preface

Studies of organismic functioning have usually concentrated upon the
structural problems and neglected the kinetic. In psychology there exists
an area of study known as “‘motivation” that is at a level of abstraction
that leaves no clue as to its derivation from a parent discipline. It is
suggested here that the derivation should be from thermodynamics for the

following reason. There is a parallel between the empirical studies of
cognition and motivation on the one hand, and the theoretical analyses
of information theory and theriaodynamics on the other. The concern of
information theory applied to cognition is with structural analysis and it
is advocated here that the principles of thermodynamics be applied to
motivation because of their mutual concern with the kinetic. Brillouin [4]
has derived information theory from the principles of thermodynamics,
reason enough for advocating that the first concern of the brain theorist
should be with motivation.
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In biology the dynamics of the organism are either taken for granted or
the end results are described. Inethology there have been certain hydrauijc
models, now abandoned. Psychology has fared better. Ashby [1]
proposed a homeostat that has inspired others in neuropsvchology [11),

An individual’s interest within the confines of a scientific enterprise can
be left 2 good deal to personal predilection. Some like to observe, and are
motivated by such questions as “What exists?” Others like to explain,
and are motivated by such questions as “How does it work 7" If, however,
the disciplines of mathematics and electrical engineering are applied to
biological phenomena, we may arrive at answers to questions beginning
with “Why?” It seems to the writer that rarely has the predilection to
exercise the question been used in biology. »

The analyses to follow will show why a certain region of the mam-
malian brain exists and why it functions in the way it appears to. The
explanations will embed the problem of this region’s functioning within
the moiar one of explaining organismic kinetics. Higher-order structuring
in the brain will also be shown to imply a higher-order kinetic system.

Introducrion

The conservation of energy principle in thermodynamics would seem
analogous to the prescribed rule of zero summing in n-person games of
the mathematical theory of games. The common interest of these branches
of physics and mathematics is the concern with operations for the trans-
ferral from one state to another. Grayson [6] has shown how a single-
loop unity-feedback system may be a physical structure exhibiting
behavior describable by the mathematical models of von Neumann’s and
Morgenstern’s Theory of Games and Economic Behavior [15]. Extending
this suggestion further, if we confine our attention to electrical activity,
it is possible to envisage the brain solely in impedance circuit terms. A
simple impedance network with parallel and series impedance and its
reduction to feedback circuit form is shown in Fig. 1. This reduction is but
an example of the general model of Fig. 2, which has the gain equation

G

14+ GH'

It is evident that if the input is of step or ramp form and occurring with
fixed magnitude at random times, then for the required negative feedback
to occur, an optimum value of G must be found to minimize the error.
Grayson [6] has suggested that, as the input varies in a random manner, _v

Gf =
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the more time after the system is in a given state, the less likely it is that
it will remain in that state. For this to occur the integral of the product of
the error and the weighting function &% is minimized and stability is
achieved thereby. Let s = o + jw, then ’

«©

F(s) =fe(t)e“’"dt. 6))
0 .
Now the problem of determining an optimum value of G may be treated
as a game.

For the moment let us consider a two-person zero-sum game, a zero-
sum game because wealth is neither created nor destroyed.v Figure 3 is
an example of a possible payoff matrix (columns: /=1 to 4; rows:
j =1 to 4), where we have arbitrarily considered a 4 x 4 matrix. The
argument runs as follows. Let nature be considered as attempting to
maximize the error and the input is either step or ramp. For stabElit}':the

A
1 2 3 4
8B1/10 3 5 1
2|8 9 14 4
3/ 71 3 8 ;
46 4 8 9
Fig. 3
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payoff to be minimized is described by Eq. (1), which is the definition of
the Laplace transform, if 5 is real and ¢ is the base of the natural logarithm.
This being the case, then less oscillation will occur if the payoff minimized
by nature’s opponent is

1+ GH

R S L 2)
1+ GH+ G (

pvf =
where C is a consiant determined by the height of the step input or the
slope of the ramp input. If there is an element in the payofl matrix that
is simultaneously the maximum of its column (i) and the minimum of its
row (), the game is completely determined; such an element is called a
“saddle point.” The saddle point of this game is seen to be when G is at
©. Whatever strategy nature uses, the payoff will always be at a mini-
mum. Such would theoretically be the case of the sleeping organism (i.e.,
with G = cc, environmental perturbations are at a minimum, i.e..
input is inhibited). Waking is explained later. Inhibition thus consists of
sending a brain parameter to its maximum value, thus imparting con-
stancies to a fully joined system so that autonomous systems are created.

Now, for reasons that will become apparent later, I believe that two
nonzero-sum type of subgames within a zero-sum continuous game are
called for to explain the functioning of those parts of the mammalian
brain known as the limbic systems [10]. I envisage the game to be con-
ducted in the following manner. If the brain is a plaver opposing its
internal environment and its external environment, then if both games
simultaneously plaved are of the nonzero-sum type, the total loss could be
recuperated if a loss in one game constituted a win in the other. Thus two
n-person nonzero-sum games played simultaneously can, at a level of
abstraction, be reduced to a two-person zero-sum game. Such a dual
game would exist in some form of equilibrium. '

_Unfortunately, no general method of solution for n-person or for
nonzero-sum games has yet been proposed. However, Fig. 4 outlines the
system I intended and a solution will be followed through.

My reasoning is as follows. With hunger or thirst, G, is manipulated
to permit nature to win; that is, Gy is less than ooc. (The reason feeding
should be considered a win for nature is: for input to occur, perturbations
must be permitted to the organism’s stability. Intake of food from the
external environment must be a win for nature with G, less than C;
G, returns to oo after intake of a learned amount of food. After ingestation
leading to a return to normal of blood sugar level, G, goes to o by delayed
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feedback coupling. With blood sugar level falling, G, is less than <,
permitting input from the internal environment. This produces a win
for the internal environment, producing appetitive behavior and setting
conditions for consummatory responses: G, goes to a value less than .
And the process repeats itself.) With satiation, G, is manipulated to
permit the organism to win against the internal environment (i.e., G, goes
to o). It is postulated that nature brings about satiation, and the internal
environment, hunger. We will also provisionally state the axiom: G, and
G. are assumed synchronous, that is, if G, = <, then G, = =. And if
G, < «, then G, < co.

This postulate is provisional because it is made unworkable in this form
in the light of the contention that both nonzero-sum games when taken
together form a zero-sum game. This being the case, if the external
environment is permitted to win, the internal environment cannot at the
same time also be permitted to win, for in a zero-sum game wealth is
neither created nor destroyed. Thus the provisional postulate would entail
that the external environment, in being permitted to win, also permits the
brain to win against the internal environment, for in this fashion wealth is
neither created nor destroyed. However, this is but saying that G, is
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maximized to 0. But by the provisional postulate, if G, is maximized,
then G, is also. And if G, is maximized, then the external environment
cannot win, which is paradoxical, as the external environment must lose
even while it is winning. A similar argument can be made using the
internal environment as first player.

To avoid this deadlock, delayed feedback is introduced and G, and
G, may-be modified out-of-phase; that is, if the external environment is
the first plaver, then G, leads G,. This permits the external environment
to win in order that it may lose later.

__In the light of these conditions my argument is thus a formal reason

why biological systems require delayed feedback in the hunger and thirst

svstems. The system depicted here has similar characteristics to two
coupled harmonic oscillators in thermodyvnamic equilibrium, and the
requirement is necessitated by this arrangement.

The appiication of this model to aspects of functioning of the mam-

" malian brain is quite evident. Lesions of the amygdaloid complex. a

structure of the limbic systems, have resulted in an animal that will
become obese from overeating if food is available to visual inspection;
if, however, food is out of sight but can be obtained by simple learnable
methods, then the amygdalectomized animal will eat less than normal [2].
It is as if incentives have a protracted value for such 2 preparation and are
unmodifiable by the fluctuations of the internal environment; while
perception of the incentive will always elicit appetitive behavior, appetitive
behavior cannot be self-initiated for an incentive that is not in the visual
field.

A formal definition of the amygdalectomized organism would be:
An amygdalectomized organism is exemplified by the flow diagram of Fig.
4 but such that although G, varies as in the case of a normal organism, G,
is staric. - '

It is noteworthy that MacKay [8] has written ucidly on the logical
indeterminacy of a free choice. His argument has an intuitive appeal
that is compatible with the network of Fig. 3. It is my contention that the
amygdalectomized animal is operating with only one feedback loop fully
functional and as such, cannot be said to be “free.”

With the normal animal, it would seem that the feedback loop from
the internal environment always, as it were, has the last word. In this
deterministic sense, the animal may be said to be free. With amygdalec-
tomy and the “freezing” of variable G,, the external environment has the
first and last word. The animal is completely determined from without
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If E} is the input dictionary or all the sets of words formed from E,, where
a word or a tape means any finite sequence of letters, then the domain of
the direct transition function M may be extended to S x E; by requiring
(VM(s, A) = s,
(Vs)s(vz)E;(Va)EkM(sa XO') = M(/W(s, I), 0)‘

The response function of a machine § = (S, M, a) to any word x € E} is
defined by _
rps(x) = M(a, x).

Now, R is a right congruence on E, iff R is an equivalence relation on
E} that satisfies the substitution property

(¥ x,», 2)g; xRy = xzRyz [where (V x)y signifies every x in X]

Now, the equiresponse relation of a sequential machine S is a relation
T(S) on E} defined as (Vx, Nex L y(S) iff rps(x) = rps(p). Then
1(Sisa rxght congruence on E;._Then, if R is a right congruence on
EY, the quotient sequential machine modulo R is defined as T(R) =
(T, N, b) where

= (R[x] | x € E}),
N(R[x], o,.) = R(x0,), i=0,....,k—1,
= R(A).

It is stated ([7], page 285) that “whenever we define an algebraic structure
whose domain is a set of equivalence classes, we must show that the
operations defined on the equivalence classes are independent of the choice
of representatives of the equivalence classes. To shorten the terminology,
we shall say that the operations must be well-defined.”

Paralleling this definition of a well-defined operation with respect to
classes, I also define a well-defined operation with respect to relations,
which would read, in an analogous fashion:

Whenever we define an algebraic structure whose domain is a set of
equivalence relations, we must show that the operations defined on the
equivalence relations are independent of the choice of the representatives of
the equivalence relations. To shorten the terminology, we will say that the
operations must be well-dejined. . R

From this I draw the following conclusion. Both normal and amygda-
lectomized animals show equiresponse relations (_LS) because both are
able to substitute responses to various outcomes. Only normal animals,
however, exhibit responses that are well defined with respect to both
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amygdalectomized animals fabricate “templates of control™ (higher-order
schematic image for action; in automata theory terms, f) but they are
unable to utilize the economic information involved in such a fabrication.
This is quite clearly seen in a study by Schwartzbaum and Pribram [13].
It would appear, therefore, that the equivalence relation can be formed by
amygdalectomized beasts. What appears to be missing is the right-
congruence relation operation that refines 8. It therefore seems that if §
is any subset of EY, then the right congruence induced by # and defined
as »
YRy <==(VY2)g; (xzsB<=yzcp)

also defines a learning set. Consider this also: I have shown [2] that, over
15 reversals on a reversal learning task, both normal and amygdalectomized
rhesus monkeys show three peaks in the curves displaying the number of
trials per reversal. These peaks are not there by chance but at the over-
the-horizon level of significance (0.06007%). I do not think that this is a
“magical number” at all; but suppose, thinking in the machine language
of programming, that there is a commutator shift involved in the forma-
tion of a learning set or the development of an equivalence relation R
refining . Then let there be a count or ISZ (increment a negative number
and skip the next instruction if zero) command in the program. Suppose
the counter is set in two’s complement arithmetic, say, at 7775. After
three shifts in both amygdalectomized and normal animals, the next
instruction is skipped and the following instruction may be JMS higher-
order learning (where JMS is “jump to subroutine”). Essentially this
would be the development of an equivalence relation of refinement. Now
I am proposing that my data show that although both the normal and
amygdalectomized animals possess the ISZ commands in their “programs™
(from the peaks in the learning curves), only the normals have the JMS
command or possess the higher-order learning subroutine. This 1s because,
whereas the normals improve their performance, the amygdalectomized
animals plod along at a lower level of efficiency.

Turning attention to recursive functions, we have that a subset R of
X* is (1) recursive if its characteristic function

0 if n¢R,
R =
1 if neR,

is a recursive function; (2) recursively enumerable if it is the range of some
recursive function f (i.e., R = {f(x) | x € X}, or is the empty set &).

Mathematical Biosciences 4 (1969), 153178
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efficiency of responding to the rewarded cue, but they are also treaFing
each task as equivalent in difficulty. We can only draw the concluspn,
therefore, that they are not processing the irrelevant data (relevance being
that which is reinforced by food reward).

It will be noted that I am not claiming that the amygdalectomized
machine is Epicurean and only zeros in on positive reinforcement. . What
I am saying is that initially, to the normal animal the unrewarded étxmulus
is neutral; then, after being rewarded and then unrewarded, it has .a
history of past reinforcements that the normal animal “regrets.” I.t 1s
not, therefore, a negative cue, and if it were, the amygdalectomized
animal would define the function f(n) fully. The unrewarded cue can
only be ““defined,” therefore, within the context of past r.emforcer'nents..
This so-called context I see as none other than a sequential ordering of
experiences. - Let it suffice to remark here that regret 40f11y exists in a
temporal sequence. The normal animal, therefore, exh1b1t§ behavior or
produces a subset R of X* that is both recursive and recurs.lvc.ely enumer-
able; an amygdalectomized animal, on the other hand, exhibits behavior
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or produces a subset R of X™* that is recursively enumerable but not
recursive.

3. AN ANALYSIS OF THE NEED FOR INCREASED CHANNEL CAPACITY IN THE
BIOLOGICAL MACHINE WITH THE FORMATION OF HIGHER CENTERS
OF CONTROL

Rabin [12] introduced the concept of real-time computation by a
Turing machine. In doing so, he was able to establish the relative
strengths of one-tape versus two-tape machines by proofs of impossibility
in real time of actual computations. We will follow his arguments through
and draw analogies with respect to the increased channel capacity of the
biological machine in the ascent of the phylogenetic tree and remark upon
the concomitant development of abstract learning. It is felt that this
concomitance is no accident, but the result of the need of a control head
of a higher order, so that the work of the 1 control heads may be super-
vised. The “programming” of this control head of a higher order is
considered to be essentially learning set formation.

First, Rabin stipulates the limitation that if the problem (or input data),
consists of n symbols, then the computation will be performed in 7 basic
steps, one step per input symbol. If the result of a computation on every
input sequence is always 1 or 0, then the machine can be viewed, as I have
already outlined, as defining a set, namely, the set of those input sequences
that vield 1. Rabin shows that there exists a recognition problem that can
be done in real time using two tapes but cannot be done in real time on a
single tape.

Now, a multitape Turing machine over the input alphabet X is a finite
automaton A having a finite set S of states and a working alphabet
W= (2,...,2,). One state, call it s,, is distinguished as the initial
state of M. A subset F < § is stipulated as the set of designated final
states. The machine has k& two-way infinite linear work tapes f, ..., 1.,
which are divided into squares. There is a reading printing head, which at
any given time scans one square of each of the work tapes. A{ is capable of
receiving inputs o € X. The working alphabet is assumed to contain a
blank symbol and at least one other symbol so that 2 < n.

The function

M(a, s, Riyeens &) = (s, X1, ..., Xp, Ay ees %)

specifies the operation of the machine, where 6 € =, 5, 5 € S, o, a, € W,
X,e (0,1, —1). This function is referred to as the machine-table of the

Mazhematical Biosciences 4 (1969), 153-178



168 TERENCE W. BARRETT -

k-tape, Turing machine M. Rabin’s interpretation is that if the input is
o and M is in state s and is reading x;, on the tape 7., 1 < r < &, then A
will go into state s’, print o; on the scanned square on f,, and move each
tape ¢, one square left, or one square right, or not at all, according as to
whether X, equals 1, —1, or 0. This action of M is called an atomic move.
The set of all finite sequences on the alphabet T will be denoted by T*,

Further defining conditions are as follows. A sequence x =g, - - -
o, € I* is said to be accepted by M if, when started in 5o and with blank
work tapes, M will go under the input sequence x through its atomic moves
and end in a state F (i.e., the state of M at the pth time unit is designated).

The set of all sequences accepted by M is called the set defined by M
and is denoted by T(M).

A set T < I* is called real-time definable (recognizable) if there exists
a multitape Turing machine M such that T = T(M). In particular, T
is called k-tape real-time definable if for some M with k work tapes,
T =T(M).

The set T, is defined: Let X = (a, 5,0, 1, «, f). Words on (a, b) will
be called ab words and the set of ab words will be denoted by 4. Words
on (0, 1) will be called 01 words and the set of 01 words will be denoted by
Z.

If x=o0,0,-""0,.,0, then, by definition, x* = 0,0,_, - ca0;.
Let To = (wau* |uc 4, v€Z) v (wpv* |uc 4, v Z); then,

LemMa 1. The set T, is real-time definable by a two-tape machine.

The proof of this lemma is by description of the mode of operation of
a two-tape machine M for which 7, = T(M): as the ab word u is coming
in, M will print it on its second tape. According to whether the input
following uv is « or B, M will start tracing back its first or second tape.
M will end in a designated state if and only if the sequence w of inputs
following « (or B) coincides with the sequence being racéd backward on
the first (second) tape. K - \

Rabin’s Theorem 1 is as follows. The set 7, is not real-time definable
by a one-tape machine. Consequently, two-tape real-time computation can
do more than one-tape real-time computation. To prove this, it is assumed
by way of contradiction that the one-tape machine M does define T, in
real time. Let the number of states of M be m and the number of letters in
its working alphabet be n. Then, if M has input w, the work space t(w) of
M on w is the sequence of tape squares covered by the motion of M while
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baving the input sequence w. If x is a sequence of squares on the tape or
a sequence of symbols, then /(x) will denote the length (i.e., the number of
elements) of x. Let x be an input sequence; by the coding of x is meant
the sequence of symbols in the squares of the work space /(x), the state of
M, and its position on the tape, at the end of the input x.

LEMMA 2. There exists a numerical consiant ¢ > 0 such that Sfor every
u <€ A and every integer i > 0 there exists a v € Z such that [(v) = i and
cf < I(t(u)).

Proof. There are 2* sequences v € Z such that /(v) = i. Since the
input uv may be followed by B, if v; 5 v, then ur, and uv must be coded
differently. Otherwise, usfv* and uv,fv* will both be accepted by M.

If I(t(uv)) < k for all v € Z, I(v) = i. Then there are at most #* - k - m
different codings of the inputs uv. Hence 2¢ < n* - k - m. If i is large, this
forces k to be large so that we may assume that km < n* (it is assumed
that 2 < n). Thus 2! < »#% and hence

1in2

-—— i k.

2inn
It may be taken, then, that ¢, = #(In 2/In n). Rabin commeats that this
¢, will do for all 7 larger than some i,; for 2 suitable smaller ¢ the lemma

will hold for all i. B

LeMMA 3. There exists an integer d > 0 (depending onlv on M) such
that for every u s A and every integer i > I(u) there exists a sequence
v €Z, I(r) = i, such that (a) ci < I(t(uv)), and (b) no more than one fifth of
the squares of t(uv) are covered by M more than d times.

This is proven by choosing a sequence v € Z, /(v) = i, for which (a)
bolds. Let d; be a number such that more than one fifth of the squares of
t(uv) are covered by M more than d, times. Then the total number of
moves of M exceeds d,3[/(¢(uv))] > $dyci. But since M operates in real
time, the number of moves of Af by the input uv is exactly /(1) + /(v) < 2i.
Thus, 3d,ci < 2iand d, < 10/c. The numberd = (10/c + 1) satisfies (b).

Now, Rabin’s proof of the main theorem rests on the idea that in
working in certain input sequences, the machine M develops bottleneck
Squares on its work tape through which information cannot flow in
sufficient quantity. A bottleneck square is defined as follows. Let u € A4,
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v<Z. A square B on t(ur) is called a bottleneck square of r(uv) if o))
under input uv the machine passes through B no more than d times; (2)
B lies outside the work space 1(i); (3) the length of the section of ¢(uy)
determined by B that does not contain t(u) exceeds /(u) + 1. From this
follows Lemma 4.

Lesoia 4. For every u & A there exists a v & Z such that the tape t(uv)
has a bortleneck square.

This is proved as follows. Let i be an integer such that 5/(u) + 5 < ¢
and also /(u) < i. By Lemma 3 there exists a sequence v € Z such that
ci = [/(t(uv)) and fewer than one fifth of the sqdar_es of t(uv) are covered
more than d times.

_cz) < /(t(;w))

Iw) < Hw) + 1 < (3

Dividing t(u) into five equal parts, we see that on either the left or the
right end of r(ur) there is an interval of length $/(t(uv)) that does not
contain any squares of /(). In this interval the one fifth of r(uv) is con-
sidered that does not run to the end. As fewer than one-fifth squares of
1(uv) are covered more than d times by M, there is a square B in this one
fifth of r(ue) that is covered at most d times, as there are at least /(1(uv))/
32 (@5 > () + 1 squares between B and the end of 1(uv). Thus B is
a bottleneck square. i

The main theorem is proved as follows. Let ue 4 and v € Z be such
that #(uv) has a bottleneck square B. Assume that B is to the right of
t(u) (although this may not be so0). As the input wv is coming in, there is a
first time that M enters the right-most square £ of t(uw). Let w e Z be the
initial section of v such that ww is the sequence leading to the first visit of
M at E. Thus t(uv) and t(uw) have the same right-hand end square E and
B is also a bottleneck square of t(uw).

— thy) {

L_

[t ] [B[R]
= t !

dw+1 <€)

F1G. 6. From [12), page 207, by permission.
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The square immediately to the right of B is denoted bv R. A passage
of M through B means either a move of M from B to R or a move from
Rto B. The state of M during a passage is the state M has when it reaches
Rin the first case, and the state A has when it reaches B in the second case.
Under the input ww the machine A will first cover the tape 7(u) and then.
under the w portion of the input, move to the square E. Letp,, p,, .. ., P
be the consecutive passages through B (r = | is not exciuded). The pas-
sage p; is a move from B to R, p. isa move from R to B, and so on. Let the
state of M during the passage p, be 5, | < i< r. The scheme of the
bottleneck square B is the (r + I-tuple (e, sy, ...,s,) where e is 1 if B
is to the right of 71(«) and e is —1 if B is to the left of t(u), and 5y, ..., s,
are as above. '

Now, the number of r passages through B is at most . Thus, there are
at most vV,

N=2m+2-m+ - +2.md,

different schemes of bottleneck squares, where m is the number of states
of M.

Let ¢ be a number such that ¥ < 2. For each u = A, () =g, let
v €Z be a 01 sequence such that #(ur) has a bottleneck square B, and let
w denote the section of v leading to the first visit of M to the end E, of
t(uv). There must be two different sequences uy, uy € A, (1)) = lu,) = g,
such that the bottleneck squares B,, and B, have the same scheme, say

(1,51, ...,5.). Note that e = 1, which means that Bu; is to the right of
tu), i=1,2.
Let
upwy = 1,8, - - - 8"1 R S 8"1‘ Ca 8".—‘1’
UsWo = 11261 ‘e 6m‘ e 5’“” [N 5’"’ e 6"‘,-1’

where &, d € (0, 1), 8,,1 is the input where M visits Ii‘u1 during the first

_passage, &, is the input when M visits B, during the second passage, and

SO on up to 8n=; similarly for 6,,.1, 6,,,2, ..., In the second SEQUENCE Usiva.
After receiving the input 8,,“l (6,,,M), M visits for the first time the right-
hand end square E, (E.,)-

The main point of Rabin’s argument is as follows. In the sequence
uywy replace, for each odd 1 < i< r — 2, the segment &, ., - - - an(m,-l
by the sequence 6,,,1_,,---_5,,,“,’“_1. Furthermore, PR 8,,(”“ is
replaced by 6, _; - - - 6,,,"_‘“. The resulting sequence is called upv. It is
noted that all the changes were made in the w; portion of wpv,. Now
uywy and u,wv, have the same schemes of states in the passages of M
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through B, and B, respectively, and our changes in u,w, were made
only in the inputs between visits to B“x’ while M was on the right of B, ,or
after the last visit to B, . We can see by finite induction over 1 < i<
r + 1 that u1w’1 again has the same scheme (1, 8y, S25 . - - s,) and that at
each input §, , j odd and 2 <j < r+ 1, the portion of the tape right of
B,, is identical with the portion of the tape t(usw,) right of B, at input
., and the states of M at the corresponding inputs are the same.

The work spaces t(u,w,) and t(uswvs) have squares B, and B,,, respec-
tively, with the following properties. The work space t(u;) is completely to
the left of B, , i =1, 2. The portions of t(uyw,) and t{uswy) beyond B,
and B, are strictly longer than I(u,) = I(us) = g. By the previous para-
graph, at the end of the inputs uyw; and ugws, M is at the end of squares E;
and E. of the respective work spaces and the portions of tape from B,
to E, and B, to E, as well as the states are identical. Assume now that
both uyw! and ugw, are followed by the input au}. Since uy # i

uwiaug € T, uawoauy & To

But /(au}) =g + | is less than the distance from E; to B,, i=1,2.
Since M operates in real time and makes one move per input, it will stay,
throughout the input portion au}, to the right of B, Thus M will start
in both cases in the same state and will move through identically printed
portions of tape. It will therefore be in the same state at the end of
upwizuy and upwexiy and hence cannot accept one and reject the other;
a contradiction.

4. ANALYSIS AND COMMENTS

There appear to be the following crucial steps to the proof.

1. The introduction- of the integer d-whose value is limited by the
concept of real time (ie., {(u) + {(v) < 2i), s0 that no more than one
fifth of the squares of t(uv) are covered by M more than d times. By the
concept of real time, therefore, Turing machines have a channel capacity.

2. The introduction of g, which is a number such that the number N
of different schemes of bottleneck squares <2’ and now I(x) must equal
g- This Iinterpret as follows. The capacity of the.channel is now delimited
so that B really is a bottleneck square in the input sense, whereas before it
was defined in an output sense (cf. Lemma 3). Therefore, the existence of
a bottleneck square does not warrant the organism-machine’s development
of more than one tape; itis the delimitation of g (i.e., the lemma), talking
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now in biological language, that should state that if the organism’s input
capacity is less than its behavioral repertoire (i.e., the portions of #(uyw})
and t(upw,) beyond B, and-B, are strictly longer than /(u,) = H{u.) = g),
so that it is, as has been shown, delimited in two senses, then that organ-
ism must develop two tapes if it is to recognize efficiently. Itis notcwo;thv
that the work space is longer than the input length in the critical case.
The work space in the Turing machine had been altered by a previous
input uv. Now, in the biological machine, there is a further delimitation
that only tapes of uniform length are accepted as input, and the case used
in Rabin’s proof could hardly occur biologically. (The real time of a
Turing machine is equivalent to the restriction of a channel capacity, or
bounded input, of an organism. Although Rabin’s proof only works
because of the assumption that input length is unbounded, this does not
preclude drawing parallels with the biological machine, which has a
bounded input but unbounded command set. A Turing machine is thus
in the reverse predicament to that of a biological machine. The parallels
drawn here are more in the nature of mirror images.) The organism is
not frustrated by the restrictions on its channel capacity; it is. rather, ina
state of not knowing. Therefore, the input I(ur) > I(u) or /(r) should be
conceived as not really an input but a metaphysical goal that the all-
knowing outsider knows the organism could achieve but cannot now with
its limited channel capacity, and limited sampling or hold capacity.

3. The work space is longer than input lengths, forcing a decision
when a critical area is not reachable after a certain set of instructions have
been executed. Thus the inability to reach a decision, or rather, a correct
one of exclusion, is due to the unreachability of the criteria. We have
already commented upon the unrealistic assumption that organisms, as
well as Turing machines, are able to engorge any length of their “life
space,”” given enough real time to do so. However, the proof still stands
for biological machines provided that the tape /(uv) is taken as containing
information that could be obrained by the organism if not only did it hav;
two tapes but also were its sampling capacity not limited. Rabin’s Turing
machine stands with the criteria for recognition within its long-term storev,
as it were, and is unable, because of real-time limitations, to bring input
and criteria together. The biological machine, on the other hand, must
fabricate its criteria from its finite sampling, and for such a machine
ignorance is bliss, for if the criteria are in its long-term store, then any
input will reach it. Only the all-knowing experimenter can take a look at
the possible modifications that tape /(uv) could make; and this is the crux
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of experimental child psychology, in which the adult experimenter may -

take a look at what would be possibie if the child had a bigger channe}
capacity. Thus, Rabin’s Turing machine is in the awful predicament of
actually “knowing” reality (i.e., the modifications on its tape by input
/(uv)) but is prevented by real time from making a decision on this informa-
tion when input of a certain form arrives. . The biological machine, how-
ever, never knows reality and if its decisions are “off,” then it is unaware
of it. )

(These remarks should be considered in the light of the consideratio
that the real time of a Turing machine is equivalent to the restriction of a
channel capacity (bounded input) of an organism; that is, these are
complementary bounds: time for the Turing machine within which to
execute instructions (i.e., a bounded set of commands), and input limita-
tions for the organism (i.e., a bounded set of addresses upon which
to execute the commands). Rabin's theorem only has relevance to biology
when translated in this manner. Parallel processing in the organism at a
lower level of hierarchical control is brought about by channel-capacity
limitations at a higher level (i.e., main program level) at which there is
only serial processing. Giving a machine two tapes is not the same as
giving it two heads, for an enlarged command language is required for a
higher-order monitoring head to be used and this is forbidden by real-
time limitations.)

We return now to the problem raised earlier that really to simulate the
organism-machine, Rabin’s Turing machine must be further delimited so
that its tape sampling is of equal length. If this limitation is accepted, then
it follows that giving a machine two tapes is not the same as giving it two
instruction heads, and thus problems solvable by one solution are not
necessarily solvable by the other. (“Know" for the Turing machine is in the
sense that it has unbounded input; on the other hand, our neuronal events
do not “know’ more because we process everything carried by them
within the limits of selective attention. The Turing machine, however,
because of real-time limitations does not ingest everything on its tapes.)
That is, by the limitation of finite sampling of tape length, or (using the
_ real-time equation) of finite time, it will-not-solve anything to give the
machine two tapes to solve Rabin’s recognition problem, in this case
1; > w;, for it might be stipulated that both u, and u, have the same scheme
for length w, or ws. Then Rabin’s proof may be reread as showing that a
Turing machine with two tapes and finite sampling space cannot categorize
certain inputs correctly after being modified by certain previous inputs.
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If nature wanted the biological machine to be more in touch with
reality, that is, more able to accept tapes of longer length such as /(uv),
then, if she already had laid down the restriction of finite sampling (for
other good engineering reasons, no doubt), she must have increased the
channel capacity of the biological machine by employing more than one
instruction head, and each instruction head receives its own finitely
sampled tape or portion of tape. This may sesm like saying that the
biological machine resembles a commonwealth, or that it may perform
two or more things at once, but for a further restriction:

In biological machines (I now think of these machines as Rabin-
Turing machines with the additional restriction of finite tape-length
sampling), it is the case that sometimes a decision such as ‘“‘greater than”
or “less than™ can only be made when the final states of two operations
are compared simultaneously with each other and not, let it be emphasized,
with some previously existing set specifications in the machine. In this
case two instruction heads would be required, but a third would also be
needed to clear the accumulator of the subtraction or addition into its
own memory space. This third head would contain instructions of a kind
similar to those of a main program, while the other heads would contain
instructions similar to those in subroutines. The transferability of the
results of the third head’s operations is obvious. It would enable operations
to be performed upon operations (i.e., operations would be monitored).
In such a case, relations (and not merely classes), would be formed in that
the attainment of E, by submachines does not entail the additional opera-
tion of a comparison with £, (attained by other submachines) concerning
the relations ““greater than,” “less than,” and “equals.” To be sure, a
third instruction head would not be required if all that were needed were
classifying behavior. But if relational “judgments” are also to be made,
then a third head is required.

If this third head operates upon instructions or is a function of a func-
tion, then its operation might be felt to define the notion of “abstract’ or
higher-order learned pérformance, or even the learning set. A function of
a function would, therefore, concern itself with the more important
matters of measuring, weighing, and (the offspring of these operations)
relations. It has been shown by Piaget [9] that the concept of number is 2
fusion of classification and iteration. In the young child, these activities
appear separate. With the appearance of a third monitoring instruction
head with an executive program for the subroutines, there could be a
fusion. And this takes place when the growing child increases its channel
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capacity (by myelination?). So it is that the existence of bottleneck
squares plus the restriction of limited sampling forces the phylogenetically
growing Turing machine to increase its channel capacity by the provision
of multiple instruction heads—if it wants to know reality at all. If it
wants to have relations as well as classes, for they are very useful, then it
must have a higher-order instruction head to monitor the subheads. This
instruction head is, I repeat, an instruction head; and the nature of the
abstract is that it is a command language. I make this point because there
are some who will still try to understand the abstract in a classificatory
(and not relational) manner. Such people usually are attracted to Plato’s
philosophy, with its emphasis on “forms.”” A form, I suggest, is the
outcome of an abortive attempt to understand a function of a function in a
classificatory manner. If the computer engineer were suddenly afflicted
with Platonism, he would believe that the existence of an executive
program warranted the belief in a ghostly memory bank somewhere, that
is, the existence of a form.

Thus it is that I believe that the solution to a learning set or reversal
problem such as *“go for the odd one” or “first this then that then this - - "
implies the fabrication of an executive program to monitor subroutines.
The “odd one” implies a relational judgment such as a “skip if zero”
command might perform; and the reversal problem implies an application
of an operator that multiplies the economic value by —1 on every reversal
when the criterion for reversal has been recognized or categorized. Notice
the low-level, even if necessary, activity of classification.

The intention has been, therefore, to compare and contrast (a) Turing-
Rabin machines with (b) biological machines. Turing machines are
hampered in their computational ability by real-time limitations in their
command mode; biological machines are hampered in their computa-
tional ability by channel capacity limitations; that is, their accumulators
are only designed to handle a /imited word length. Rabin offers no way of
removing real-time limitations and it would appear that limitations on
word length are obviated by hierarchial control of executive programs
over subprograms. Rabin’s proof is obviously irrelevant to the solution.
It is relevant to the limitations because they reflect the limitations of the
biological machine in mirror image, that is, a machine with unlimited input
but limited command mode (real time) has computational limitations for
which no solution is given; a machine with limited input (channelcapacity)
but an unlimited command mode has computational limitations for which
a solution is hierarchial control.
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“There is only a similarity in reverse and I have attempted to draw the

analogy. -

SUMMARY

The work of Rabin was reviewed in detail showing that in real time
there are some classificatory problems unsolvable by a one-tape Turing
machine that are solvable by a Turing machine with two tapes.

By introducing the limitation of finite tape sampling, it was indicated
that the two-tape machine is not reducible to the two-head machine with
one tape. Also, the biological machine, because of this restriction plus
that of real time. is an n-head one-tape machine.

Turning away from the old problem of classification to the new one of
drawing relations (judgments), it was felt that a monitoring head of
instructions is nesded. If this is adopted, it becomes apparent that the
activity of this instruction head is of the nature of the *““abstract.”” The
abstract is therefore an offspring of this relational activity, as an executive
program can consist of jump commands alone and it would be wrong to
suggest a classificatory function to this monitoring activity.

It is of the nature of the learning set and of reversal learning to be
abstract, which leads to the conclusion: the amygdalectomized machine
is incapable of abstract learning. It thus suffers from ablation of the
appraisal function necessary to the operation of its executive programs.
Relational thought is gone; egocentricism obtains. Only subroutines are
availabie.
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